A Posteriori Estimates for Conforming Kirchhoff Plate Elements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates

This paper establishes a unified a posteriori error estimator for a large class of conforming finite element methods for the Reissner-Mindlin plate problem. The analysis is based on some assumption (H) on the consistency of the reduction integration to avoid shear locking. The reliable and efficient a posteriori error estimator is robust in the sense that the reliability and efficiency constant...

متن کامل

Flux Recovery and A Posteriori Error Estimators: Conforming Elements for Scalar Elliptic Equations

In this paper, we first study two flux recovery procedures for the conforming finite element approximation to general second-order elliptic partial differential equations. One is accurate in a weighted L2 norm studied in [Z. Cai and S. Zhang, SIAM J. Numer. Anal., 47 (2009), pp. 2132– 2156] for linear elements, and the other is accurate in a weighted H(div) norm, up to the accuracy of the curre...

متن کامل

A Posteriori Error Estimator Competition for Conforming Obstacle Problems

This article on the a posteriori error analysis of the obstacle problem with affine obstacles and Courant finite elements compares five classes of error estimates for accurate guaranteed error control. To treat interesting computational benchmarks, the first part extends the Braess methodology from 2005 of the resulting a posteriori error control to mixed inhomogeneous boundary conditions. The ...

متن کامل

Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations

We present equilibrated flux a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed finite element discretizations of the two-dimensional Poisson problem. Relying on the equilibration by the mixed finite element solution of patchwise Neumann problems, the estimates are guaranteed, locally computable, locally efficient, and robust with ...

متن کامل

Conforming polygonal finite elements

In this paper, conforming finite elements on polygon meshes are developed. Polygonal finite elements provide greater flexibility in mesh generation and are better-suited for applications in solid mechanics which involve a significant change in the topology of the material domain. In this study, recent advances in meshfree approximations, computational geometry, and computer graphics are used to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2018

ISSN: 1064-8275,1095-7197

DOI: 10.1137/17m1137334